Using the following list of words, fill in the blanks with the correct term. Some terms may be used more than once.

Glycolysis, Krebs cycle, electron transport chain, pyruvate, ATP, NADH/H⁺, cytoplasm, oxygen, carbon dioxide (CO₂), matrix of mitochondria, FADH₂, proton (H⁺), gradient, mitochondria, inner membrane, electron carriers, proton (H⁺) pumps, protons (H⁺), intermembrane space, matrix, electron transport chain, glucose, ATP synthase, phosphate, ADP, greater, diffuse, electrons, chemiosmosis, water.

Aerobic cellular respiration is composed	of three steps. The steps, in order, ar	re
and _		During
, some of the potential energy	of a primary foodstuff, e.g., the sugar	
, is released during a series of c	hemical reactions that occur in the	
of the cell. Glucose, a six-carbon sugar molecule	z, is converted to two molecules of	
, a three-carbon molecule. Ir	addition, a small amount of the total e	energy in
glucose is stored in a few molecules of	_, the energy carrier of the cell, and s	some high-
energy, electron carriers	Glycolysis does not require	and
does not generate the gas	·	

______, the end product of glycolysis is converted to acetyl CoA, with the release of one molecule of carbon dioxide, for further processing by the ________. that occurs in the ________. In the Krebs cycle some high energy, electron carriers ________ and ______, energy carrier, are generated. Two _______ molecules are released for each cycle of the Krebs cycle.

Glycolysis and the Krebs cycle generate only a small amount of _____ - only 4 molecules per molecule of glucose. A large amount of the chemical energy from glucose is stored in the form of the electron carriers NADH/H⁺ generated during ______ and _____ and _____ and FADH₂ generated <u>only</u> during the ______.

The	_ converts the energy stored in NADH/H * and FADH $_2$	
into potential energy in the form of a	The electron transport chain is a	
ries of proteins located in the The proteins act		
and some of them ar	e The first protein of the	
electron transport chain accepts	from regenerating	
NAD^{\star} that returns to function in either glyco	lysis or the Krebs cycle. Electrons are then	
transferred sequentially down the	The final electron acceptor is	
which combines with hydrog	en ions (H *) to form The energy	
released as the electrons move through certo	ain electron carriers is used to pump	
from the of mitochondria i	nto the of mitochondria.	
This results in thet	hat serves as a potential energy source. The	
concentration of protons is	in the intermembrane space than in the matrix	
of the mitochondria. The protons cannot fre	ely across the inner membrane of	
the mitochondria. Protons move across the in	nner membrane via a large protein called	
; the energy released	by the movement of through the	
protein is used to add a gro	oup to to create This	
process is called	·	

Rotenone inhibits the transfer of _______ to the first electron carrier of the _______. Therefore there is no electron transport chain activity to generate a _______. Without the proton gradient, no ______ can be made via chemiosmosis. Other inhibitory compounds like dintrophenol that make the _______ of the mitochondria leaky (permeable), block the formation of the _______ necessary to drive ATP synthesis via chemiosmosis.

Extra Credit:

The synthesis of ATP via chemiosmosis is a theory first proposed by